- version à 1 voie
- circuit de commande EEx ia IIC
- alimentation (tension nominale) 110 V/230 V C.A.
- gamme de fréquence d'entrée 0,001 Hz ... 999 Hz, réglage décimal
- courant de sortie 0 mA ... 20 mA ou 4 mA ... 20 mA pour une charge de 0 Ohm ... 1000 Ohms
- touches de test pour valeurs analogiques
- sortie reproduction des impulsions d'entrée

Réglage de la fréquence nominale f

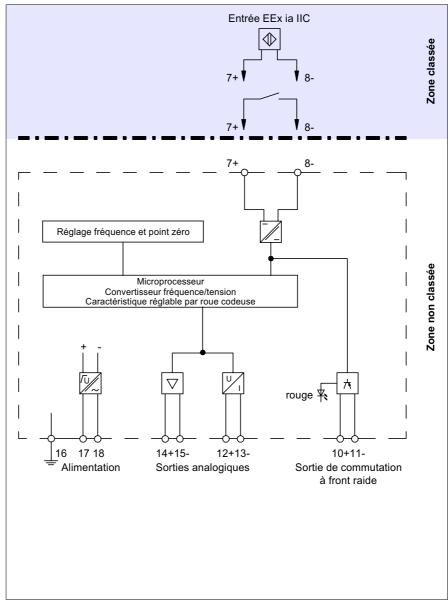
Roue codeuse S1 $(0 ... 9) \times 100$ Roue codeuse S2 $(0 ... 9) \times 10$ Roue codeuse S3 $(0 ... 9) \times 1$

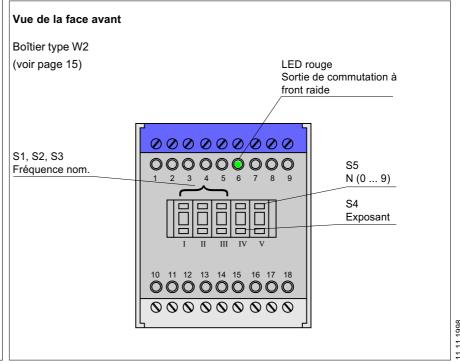
Roue codeuse S3 $(0 ... 9) \times 1$ Roue codeuse S4 $\times 10^{-(0 ... 3)}$ voir tableau

Tableau:

Roue codeuse S4 en pos.	Fréquence nominale f _n (S1 + S2 + S3)	Point zéro de la caract. de sortie
0	x 10 ⁻⁰ Hz	0 mA
1	x 10 ⁻¹ Hz	0 mA
2	x 10 ⁻² Hz	0 mA
3	x 10 ⁻³ Hz	0 mA
4	x 10 ⁻⁰ Hz	4 mA
5	x 10 ⁻¹ Hz	4 mA
6	x 10 ⁻² Hz	4 mA
7	x 10 ⁻³ Hz	4 mA

Exemple: S1:3 S2:5


S3:7 S4:6


Fréquence nom. $f_n = 357 \times 10^{-2} \text{ Hz} = 3,57 \text{ Hz}$ (point zéro de la caractéristique de sortie à 4 mA)

Gamme de réglage : 0,001 Hz ... 999 Hz f_a = (S1 + S2+ S3) x S4 en Hz

Application :

Détecteur de proximité comme émetteur d'impulsions (voir page 254)

Tension nominale

Consommation en puissance

Entrée (de S.I.)

Valeurs nominales Tension à vide / Courant de court-circuit Point de commutation / Hystérésis Durée de l'impuls. d'entrée / entre 2 impuls.

Valeurs max. selon certif. de conformité

Tension U Courant I₀

Puissance P

Valeurs autorisées Protection, catégorie

Groupe

Capacitance externe Inductance externe

Sorties (non de S.I.)

Sorties :

Gamme de courant de sortie

Charge

Courant max.

Sortie: Reproduction des impuls. d'entrée

Tension de commutation max.

Courant nominal

Courant de commutation max.

Niveau signal 1 / signal 0

Sortie analogique : Touches de test

Résistance interne R

Caractéristiques de transfert

Fréquence d'entrée

Plage de travail

Rapport d'impulsions

Erreur de linéarité

Certificats/Homologations

PTB (Allemagne)

FM (Etats-Unis) ASEV (Suisse)

Masse

Température ambiante

bornes 17, 18

207 V C.A. ... 264,5 V C.A.; 45 Hz ... 65 Hz;

99 V ... 126,5 V; 45 Hz ... 65 Hz

env. 3,5 VA

bornes 7+, 8-

selon DIN 19 234 ou NAMUR env. 8 V C.C. / env. 8 mA

1,2 mA ... 2,1 mA / env. 0,2 mA

 \geq 350 µs / \geq 350 µs

PTB no. Ex-81/2146X

autres certificats internationaux voir page 418

12.7 V C.C. 20 mA

63,5 mW

[EEx ib]

[EEx ia] / IIC / IIC ΪΒ IIB 1,1 µF $/0,415 \mu F$ $3,9 \mu F$ / 0,8 µF 5 mH / 2 mH 290 mH /76 mH

sortie courant bornes 12+, 13-; 14+, 15-

0 mA ... 20 mA ou 4 mA ... 20 mA

≤ 1000 Ohms

22 mA

sortie électronique passive bornes 10+, 11-

30 V C.C.

10 mA, protégée contre les courts-circuits

16 mA

(L+) -2,5 V / sortie bloquée (courant résiduel ≤ 10 μA)

0 mV ... 200 mV

env. 10 kOhms

≤ 1,5 kHz

 $0,001 \text{ Hz} \le f_n \le 999 \text{ Hz}$

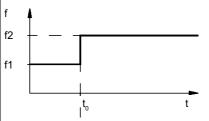
asymétrique de la company de l

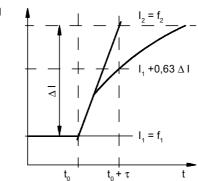
≤ 1 % de la valeur fin d'échelle

no. Ex-81/2146X

no. OQ BAO.AX

no. 90.102719X


-25 °C ... +60 °C (248 K ... 333 K)


Réglage de la constante de temps

Le convertisseur fréquence/courant a un temps de réponse réglable par la roue codeuse S5. Cela permet de régler le temps après lequel le courant de sortie augmente suite à une augmentation abrupte de la fréquence d'entrée. La valeur de la constante de temps τ est calculée d'après la formule suivante:

$$\tau = \frac{2^{N+1}}{f_E}$$

La valeur de N est réglable de 0 ... 9 avec la roue codeuse S5.

$$I(t) = I_2 + (I_1 - I_2) \times e^{-\frac{t}{\tau}}$$
$$= I_2 + \Delta I_1 - I_2 \times e^{-\frac{t}{\tau}}$$

I (t): courant de sortie

J₁: courant de sortie - fréquence f₄

courant de sortie - fréquence f₂

 Δ^2 I: différence courant de sortie I₁ - I₂

constante de temps

Sous réserve de modifications en raison d'améliorations techniques

Copyright Pepperl+Fuchs, Printed in Germany

Pepperl+Fuchs S.A.R.L. · FRANCE · 12 Av. des Tropiques · 91955 Courtaboeuf Cedex · tél.01 60 92 13 13 · fax 01 60 92 13 25 Pepperl+Fuchs s.p.r.l. · BELGIQUE · Groenendaallaan 101 · 2170 Antwerpen tél. 03/644.25.00 · fax 03/644.24.41 DM checkout 5005-SEP-05

Plages de travail pour I (f _n)	La pente de la caractéristique peut être modifiée avec les roues codeuses S1, S2 et S3 sans influencer la linéarité ou la précision de mesure. En cas de survitesse (fréquence d'entrée > fréquence réglée), le courant de sortie augmente jusqu'à une valeur d'environ 1,1 fois le courant nominal. I (mA) O,001 Gamme de régl. fn I (mA) O,001 999 f (Hz) Gamme de régl. fn Gamme de régl. fn	
Sens d'action		
Entrée	Reproduction des impulsions d'entrée	LED
	Signal 1	allumée
	Signal 0	éteinte

Sous réserve de modifications en raison d'améliorations techniques.